Incomplete Label Distribution Learning

نویسندگان

  • Miao Xu
  • Zhi-Hua Zhou
چکیده

Label distribution learning (LDL) assumes labels can be associated to an instance to some degree, thus it can learn the relevance of a label to a particular instance. Although LDL has got successful practical applications, one problem with existing LDL methods is that they are designed for data with complete supervised information, while in reality, annotation information may be incomplete, because assigning each label a real value to indicate its association with a particular instance will result in large cost in labor and time. In this paper, we will solve LDL problem when given incomplete supervised information. We propose an objective based on trace norm minimization to exploit the correlation between labels. We develop a proximal gradient descend algorithm and an algorithm based on alternating direction method of multipliers. Experiments validate the effectiveness of our proposal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Label distribution based facial attractiveness computation by deep residual learning

Two challenges lie in the facial attractiveness computation research: the lack of true attractiveness labels (scores), and the lack of an accurate face representation. In order to address the first challenge, this paper recasts facial attractiveness computation as a label distribution learning (LDL) problem rather than a traditional single-label supervised learning task. In this way, the negati...

متن کامل

Semi-Supervised Multi-Label Learning with Incomplete Labels

The problem of incomplete labels is frequently encountered in many application domains where the training labels are obtained via crowd-sourcing. The label incompleteness significantly increases the difficulty of acquiring accurate multi-label prediction models. In this paper, we propose a novel semi-supervised multi-label method that integrates low-rank label matrix recovery into the manifold ...

متن کامل

Large-Scale Multi-Label Learning with Incomplete Label Assignments

Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-...

متن کامل

Classifying with confidence from incomplete information

We consider the problem of classifying a test sample given incomplete information. This problem arises naturally when data about a test sample is collected over time, or when costs must be incurred to compute the classification features. For example, in a distributed sensor network only a fraction of the sensors may have reported measurements at a certain time, and additional time, power, and b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017